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ANATYSIS OF PIASTIC THERMAT, STRESSES AND STRAINS IN
FINITE THIN PIATE OF STRAIN-HARDENING MATERTAT
by Ernest Roberts, Jr., and Alexander Mendelson

Lewis Research Center

SUMMARY

A practical method for obtaining the plastic deformations in a biaxial
stresg field is presented. The method is numerical, utilizing a system of
successive approximations. There are no limitations regarding boundaries,
loading history, stress-strain curves, or temperature dependence of material
properties. The incremental theory of plasticity is used. Two examples are
presented for strain-hardening materials: a thermally locaded long rectangular
plate, and a thermally loaded square plate. Where possible, comparisons are
made with existing solutions. The validity of certain approximations to the
solution is also investigated.

INTRODUCTION

There is currently considerable interest in stress analysis of structures
that have been permitted to deform plastically. Certain statically loaded
structures, some pressure vessels, for example, can be permitted to deform to
beyond the elastic limit without limiting their usefulness. Furthermore, the
life of cyclically loaded structures has been shown to depend on the amount of
plastic flow per cycle (ref. 1). Available solutions, however, are limited
to one-dimensional stress fields or neglect strain-hardening or both.

There are several closed-form solutions to elementary problems using
ideally plastic materials (ref. 2) and a few for strain-hardening materials
(ref. 3), but they are confined to one-dimensional stress fields. The numeri-
cal procedure developed in reference 4 permits solutions to a much wider vari-
ety of one-dimensional problems with strain-hardening by using successive
approximations. ©Some two-dimensional problems have been solved in reference 5
by using finite-difference techniques, but these neglect strain-hardening.

A method is described that combines the established numerical techniques
of finite differences with the successive approximation technique of refer-
ence 4 to obtain an accurate solution to two-dimensional plane-stress or plane-
strain problems for a plastically deforming work-hardening material. The only
assumptions necessary are the usual ones for plane-elastostatic problem, the
classical conditions of continuity, homogenity, isotropy, and those assumptions




associated with numerical differentiation. In the illustrative examples rec-
tangular boundaries are assumed together with linear strain hardening and mate-
rial properties independent of temperature. These restrictions, however, are
not intrinsic to the present method. The method may easily be extended to more
complicated boundaries, stress-strain curves, and material properties.

The report presents the solution to two problems: a thermally loaded long
rectangular plate, which is essentially a one-dimensional problem, and a
thermally loaded square plate, which is a two-dimensional problem. The treat-
ment of this report uses a stress-strain curve representative of strain-
hardening materials, the von Mises yield criterion, and its associated flow
rule, which results in the Prandtl-Reuss stress-strain relations; that is, the
so called incremental theory of plasticity is used. Comparisons were made with
other solutions, where they exist, and were found to be in good agreement. The
problems were chosen to illustrate the use of the method and are not indicative
of any limitations regarding boundaries, loading, stress-strain curves, or
material properties.

SYMBOLS
IH Young's modulus
g function of plastic-strain increments

k] constant of proportionality defining temperature function

m dimensionless tangent modulus
n integer

T temperature function

X spanwilse coordinate

¥ chordwise coordinate

Z thickness coordinate

o linear coefficient of thermal expansion
B span-to-chord ratio

Y shear strain

€ normal strain

A constant

v Poisson's ratio

o normal stress
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T shear stress

o® Airy's stress function
V¢  harmonic operator, éég + éﬁg
Ax dy
4 54: 54:
v%  binarmonic operator, 7 + 2 N + Z
X Ox~dy oy
Subscripts:
e equivalent or effective
i row index
J column index
P plastic component
t total
b'e spanwise coordinate
Yy chordwise coordinate
Z thickness coordinate
Superscripts:
e elastic component
* dimensionless quantity

ANATYSIS

The problem of determining the elastic state of stress in a thin rectangu-
lar plate of uniform thickness is in the category of generalized plane-stress
problems. Such problems are freguently stated in terms of Airy's stress
function, whereby the problem is reduced to solving a single fourth-order par-
tial differential equation (ref. 6). The method has been applied successfully
to thermally loaded rectangular plates with numerical procedures being used to
solve this partial differential equation with its associated boundary condi-
tions (ref. 7). A similar differential equation can be derived for defining
the plastic state of stress in such a plate from the conditions of equilibrium
and compatibility and a set of stress-strain relations ineluding plastic terms.
The stress-strain relations with temperature terms and plastic-strain terms
added are (in the coordinate system defined in fig. 1) as follows:
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Figure 1. - Unnormalized coordinate system used to determine state of stress in 1+ v
thermally loaded thin flat plate. T = i T + Z AYP + AYP (lc )

where the }:'s represent the accumulation of plastic strain increments from the
beginning of the loading history up to but not including the present increment.

The equilibrium and compatibility relations are

g% ox + g%-r =0 (2a)
g% oy + g% T =0 (2b)
5% d% 2
el R A )

The incremental plasticity relations derived from the von Mises yield
criterion and its associated flow rule, as presented in reference 2, are

Aﬁe D
= E,P -
Dey o Zo [20y - oyl (42)
ﬁﬁe
Ney p = oo L20y - oyl (4b)
3 Neg P
where
Ae = 2_ ﬁﬁz + Aﬁz hA+-A£>_7AéA~L>;>Z§2 (5)
R x,p ¥ Oy,p T Sex, oMy, t AD
and
= 2 2 2
0y = ‘/ox + oy = 00y + 3T (6)




Finally, a relation is needed defining the stress-strain curve above the
yield point. This relation depends on the material and need not be an explicit
function. If plastic flow occurs during the increment of loading under con-
sideration, the function can be written as follows:

Lﬁge,p* '_‘Age’p__ 0. = Op + f(ZAee,p> (7a)

I BN’ r/ For example, as can be seen from figure 2, for
/ linear strain-hardening

/ m
/ >~ f=5;—— EAee’p (7b)
- tan - mF
° Equations (1) to (7), along with the condi-
Og i tion that all normal and shear stresses vanish on
Og,i-1 ' the boundaries, completely define this problem.
50 The problem will be solved by combining equations

tions (1) to (3) and by introducing a stress
function. First the compatibility relation is

tan"lE expressed in terms of the stresses by combining
\ 0 equations (1) and (3). This process yields
£
52 e
Figure 2, - Stress-strain curve for sample a EaT - 2( 1L+ ) 5 + Ox
problem, Dimensionless tangent modu- BX ay y
lus, 0,1,
2 2 2
+ é—— Oy — V é—— Oy - vV — 0y + g =0
y > Y
ox oy x

where

& £ A + Ae 2 of Ly + 4O
=k gz" A€:><,p *+ AeX,p +5X2 €ZY;P v,p) 7% x Jy P b

Introducing the stress function ¢ = o(x,y) defined by

2 _ d2 L _ d% -
—Zq)“‘cx:a——z-CP—Gy; m T (9)

and substituting into equation (8) yield

2 2 2
v4<p + YVOEaT + g = v(2 ai 57 ° + :yz cy‘+ 2? Gx) (10)

Differentiating equation (2a) with respect to x and equation (2b) with re-
spect to y and adding yield

,
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Substituting that expression into equation (lO) produces the followiﬁg partial
differential equation that must be solved by using suitable boundary condi-

tions:
V4 + VPEqT + g = O (12)

Boundary conditions for equation (12) derived from the vanishing of all
normal and shear stresses on the boundaries are

p(x,1) =0 (13a)
% o(x,1) =0 (13b)
o(B,y) =0 (13c)
2 9(p,y) = 0 (134)

Equation (12) is nonlinear, meking a closed-form solution difficult to obtain;
therefore, an iterative method is used in this paper. Iterative procedures
have become commonplace in recent years with the increased use of high-speed
electronic computing equipment. The differential equation 1s rewritten in
difference-equation form at a large number of points in the rectangular region,
and the resulting system of algebraic equations yields a value of ¢ at each
point. The procedure used in so doing is described in appendix A.

Reference 4 utilizes a method of successive approximations, which is
readily adapted to the present problem. It operates on the quantities equiva-
lent plastic strain and equivalent stress, as defined in equations (5) and (6);
these are the quantities in a uniaxially loaded system corresponding to the
biaxial state of stress in a plane stress system. Briefly, the method is as

follows:
(1) Select a value of load.
(2) CGuess initial values of the plastic-strain increments.
(3) Calculate the equivalent plastic-strain increment from equation (5).

(4) Determine the value of o0g from the stress-strain curve for the mate-
rial.

(5) Calculate g from equation (8) by using the current plastic-strain
increments.

(6) Solve equation (12) for the stress function.
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(7) Calculate the stresses from equation (9).

(8) Calculate a new set of plastic-strain increments from equations (4).

(9) Repeat steps 3 to 8 until the newly calculated plastic-strain incre-

ments are sufficiently close to the previous ones. (Where there are no plastic
strains, only one iteration is necessary.)

(10) Increment the load, sum the plastic-strain increments, and return to
step 2.

Start
Print
Read Aky = results
Ny
Calculate elastic
values of ¢
l Calculate remaining
Calculate elastic stresses and strains
stresses
l‘ Converged
Assume starting values
of plastic strains

('e_ Not converged
Calculate Ag from current
values of strains Calculate Ax-:e,p

Calculate plastic

E Calculate o, from
values of o 9 stress~-strain curve

Recalculate plastic Calculate new plastic A
stresses strain increments ﬁ)
Calculate o

from stresses

Yes Set plastic strain
increments to zero

No

Figure 3. - Calculation procedure for iterative finite-difference method of solution,



This procedure may be applied only where there is no unloading. When un-
loading occurs, only the elastic component of the strain is recovered. Fur-
thermore, on reloading, no additional plastic flow occurs until the stress at
which unlcoading occurred is reached. The details of the computational proce-
dure will not be discussed in this report.

It is to be noted that the values of stress produced by the above opera-
tlons do not correspond to the value of equivalent stress determined from the
stress-strain curve until convergence occurs. The procedure as described in
the preceding paragraphs is outlined graphically in figure 3 (see p. 7).

DISCUSSION

The presentation of the solution to a problem, such as the one presented
in this report, is of little value unless sufficient checks are avallable to
instill a degree of confidence in its use. Fortunately, there are a few checks
avalilable for this problem. The solution for loads toc small to produce plas-
tic flow can be compared with the solutions presented in reference 8. That
reference discusses the problem of an elastic flat plate of finite dimensions
subjected to a chordwise thermal gradient. Reference 7 discusses a similarly
loaded infinite strip. The solutions are identical along the central chord of
long rectangular plates. For loads great encugh to produce plastic flow, com-
parison can be made with the problem considered in reference 3. Reference 3
concerns itself with the semi-infinite plate, but by the principle of Saint-
Venant that solution should be identical with the solution for a long rectangu-
lar plate far from its ends. Reference 8 verifies that statement in the elas-
tic range for plates having span-to-chord ratios of 3 or greater. In summary,
the following compariscns can be made for the two problems under consideration:
for the rectangular plate the elastic solution everywhere and the plastic solu-
tion far from the ends can be checked against previous solutions; for the
square plate the elastic solution everywhere can be compared with other solu-
tions. All the comparisons will be made for the case of a parabolic chordwise
temperature distribution ™ = klyz, where T* is a dimensionalized tempera-

ture function.

Figure 4 compares the elastic stress distribution in a 3 by 1 plate sub-
Jjected to a chordwise parabolic temperature distribution with the solution pre-
sented in reference 8. The figures are presented in terms of a dimensionless
stress, the ratio of the stress to the yield stress. Reference 8 uses the
method of collocation to obtain the solution. It compares favorably with other
solutions in the literature, and far from the ends agrees with the classical
solution for an infinite strip. The figures show excellent agreement between
the finite-difference solution and the collocation solution and give some con-
fidence that a sufficiently small grid was chosen for the elastic finite-
difference solution.

Figure 5 compares the plastic solution at midspan of the rectangular plate
with the solution of reference 3. A strain-hardening material is assumed, with
a dimensionless tangent modulus of 0.1, as shown in figure 2 (p. 5). Refer-
ence 3 gives the solution of the infinite strip. That solution also compares
favorably with others in the literature. Unfortunately, the solution far from

8
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the ends is the only one available. But it can be seen that again the agree-
ment between the two is excellent.

0 ‘(L\K To
. % y ps SR . - > | \57\
© N— SEL 2 S S— ©
- 6 | P— r 6
a 0 : e \ h § 0"7 - u —— £
g 1.0 T \\\t E . L
§ Dimensionless spanwise—t - \1)\ 2 — |4
H coordinate, \\\ -§ b 18 o
s -1 x/B —_ g -1
v \\ (%]
a a I Solution _|
2 2
s ) 5 \ /c/ Ref. 8
s 9 no- o] This report—
Ny “
a =3 —
3 S L l
0 .2 .4 .6 .8 1.0 0 2 .4 .6 .8 1(

Dimensionless chordwise coordinate, y

Figure 6. - Comparison of elastic-stress solution in square plate with elastic solution of reference 8, Proportionality con-
stant, 5.7; parabolic chordwise temperature distribution.

Figure 6 compares the elastic

10— : Co
g%;; L/;ﬁ;%ikfr% | ’i : solution throughout a square plate,
9—rgT7 ;5// e Incipient™ as given in reference 8, with the
5 //52/ ’ plastic solution of this report. There is
=~ BT E s ! flow ~ no discernable difference.
) 3= r/‘é !
g A | / : : :
s {jijLs ; The remainder of this section
3 ) -2 | ‘ 77 is devoted to the plastic solution
g —|— gﬁﬁ?ggﬁs : /;V/ for the square plate. Figure 7
g 5 €, — / shows plastic-strain trajectories
§ — 1 for the maximum temperature distri-
g 4 — 1’5 // ! bution. The distribution is also
S 5% il 7 N . .
2 L0 T~ » \\ \ 70 "/ pirabollc, having the form
R e N 5 ! ™ = klyz, with kg = 20 for this
& , \ 1o/ i/ figure. It is assumed that kj
L<;Z§;, \ 2 /o started at some small value pro-
.l~2}> / 4 56 ducing no stresses exceeding the
iﬁ:— s yield point and was gradually in-
0 1 2 3 4 5 6 .1 .8 .9 10 Creased to the value of 20 with no
Dimensionless spanwise coordinate, X/ intermediate unloading. It was
Figure 7. - Equivalent plastic strain trajectories in square plate sup- ~ Lurther assumed that there was no
jected to parabolic chordwise temperature distribution. change in material properties with

increasing temperature. The quan-
tity plotted is the summation of the increments of dimensionless equivalent
plastic strain, as defined by equation (5). The curves are the loci of all
points of constant equivalent plastic strain. Because of symmetry, only the
first quadrant of the plate is shown. The figure discloses that for the entire
plate (as opposed to the one quadrant shown in the figure) there are five
regions of plastic flow. There is a region about the center almost circular in
shape, being flattened at the diameters coincident with the axes of the plate;
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there are four other regions, identical in shape, along the four sides of the
plate. There is no plastic flow at the corners of the plate. Maximum plastic

. flow occurs at the centers of the
10 v - four sides, where the plastic
Veravd strain is roughly three times as
7 great as at the center of the
plate. Furthermore, the strain
gradient is considerably steeper
than that near the center.
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Ten increments of load were used to solve this problem. The increments
varied between o4k; = 1.5 and 24kq = 2.5 and between ki = 1.5 (the largest
value of kj that produces no plastic flow for a parabolic thermal gradient)
and k3 = 20. An experiment was run in which the increment size was gradually
increased. 1t was found that AMAkj = 2.5 was the largest increment that pro-
duced no significant change in the final answer. For very large increment
sizes, the iterative process would not converge. It is difficult to determine,
however, which is the optimum increment size for any given problem. It is also
difficult to determine the optimum mesh size. Good elastic solutlons were ob-
tained with a mesh size twice as great as the 0.05 by 0.05 used for this dis-
cussion. The larger mesh, however, was too coarse for the plastic solution.
Even the smaller mesh size made accurate plotting of the strain trajectories
difficult. It is not known if a smaller mesh size would produce a more accu-
rate solution, but in view of the checks dilscussed in the first part of this
sectlon, it is felt that this mesh size 1s adequate.

Murphy, in reference 9, was able to use a coarser grid. He solved a
problem, however, involving proportional loading; that 1s, the ratios of prin-
ciple stresses remained constant throughout the loading history. This per-
mitted him to use deformation theory and presented no problem with the choice
of loading increment. The choices of loading increment and grid size are in-
terrelated. If a small loading increment is chosen, the rate of growth of the

11



zone of plastic flow is small, and a fine grid is necessary to detect changes
in the wvalues of plastic strain. This can be illustrated by the following
example. Plastic flow first starts at the outer boundaries of the plate. As
the load is gradually increased beyond the point at which localized yielding
occurs, the zone of plastic flow is very small. If the grid is so coarse that
the points immediately inside the plate boundary experience no plastic strain,
the solution does not change in two successive iterations, and it must be con-
cluded that convergence has occurred. In order to avoid this situation, the
grid must be fine enough so that, with each increase in load, the strain at
another set of points changes. Murphy did not encounter this problem because
his loading increment was the final load, and many points throughout the region

experienced a plastic strain.

The Jast matter to be discussed is an approximate method that is some-
times used in plastic flow analysis (ref. 4). This is the so-called strain
invariance principle. Using this principle, an elastic analysis is made, even
though 1t is known that plastic flow will occur. The stresses calculated will
be too high at those points where yielding has occurred, but it is assumed that
the calculated total strains are correct. Therefore, an approximation to the
correct stresses and plastic strains may be determined by using the stress-
strain curve for the material. In a multiaxial case, the equivalent stradins
and stresses must be used in referring to the stress-strain curve. A variation
of the strain invariance agsumption uses a different stress-strain curve for
determining the plastic strains. It uses an ideally plastic stress-strain
curve; that is, the stress-strain curve is a straight line of zero slope in the
plastic region; there is no strain-hardening. The validity of these assump-
tions can now be investigated for the two problems under consideration.

r Shown in figure 9 is the error in

[ ‘ I I ] Stralin Inv,arian’ce . . .
— —-————- 3 By 1plate, neglecting strain hardening — ~ the two dlffer?nt appr9x1mat19ns at
— — — 3By lplate various loads if the finite difference
10/~ ————— Square plate, neglecting strain hardening- solution is assumed correct. The fig-
| Square plate . ure is for the point of maximum plas-
N Pt tic strain in the two plates, the mid-
0 e point of the long side. It is appar-
L | ent that for both plates there is less
- Iy s N error in the computed plastic strain
g “lo— T when strain hardening is neglected.
g In the case of the long plate, where a
5 /”,,///“"’— uniaxial state of stress exists, the
= N— ] strain invariance approximation is
\k\\ I quite good. In the square plate,
] where a biaxial stress state exists,
30— the error is larger and nonconserva-
tive. The error, however, may be
a0 | acceptable by engineering standards.
0 4 8 12 16 20
Proportionality constant, kg CONCTUSTONS
Faurs . Parent o n sasalnt et s o
Iljgrzgtptl)ate and short plate subjecte%ptro parabolic " It has been shown that two-
chordwise temperature distribution. dimensional problems involving plastic
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flow can be solved by an extension of the method of successive approximations
presented in reference 4. Furthermore, comparison between available solutions
indicates a high order of accuracy. It must be emphasized that the procedure
utilizes basic equations of great generality. Loading history, material prop-
erties, exterior boundaries, and the stress-strain curve are all quite arbi-
trary.

Finally, it has been shown that the strain invariance approximation,
neglecting strain-hardening, produces solutions of reasonable accuracy for two-
dimensional problems. It must be noted that there is a greater error produced
by that assumption in two-dimensional cases than in one-dimensicnal cases, and
although the error is nonconservative, it may be acceptable by engineering
standards.

Lewis Research Center :
National Aercnautics and Space Administration
Cleveland, Ohio, August 18, 1964
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APPENDIX A

MATRIX INVERSION

The solution to equation (12) is approximated by replacing the partial
differential equation by a corresponding difference equation and by solving the
resultant algebraic system iteratively. The equation 1s rewritten in the
following form by first normalizing it by dividing the x-coordinate by the
gspan~to-chord ratio B and then dividing all terms by the elastic limit og.

1 34 2 4 aé>* (ﬁlaz 52)* *
10t .2 - of = (2 ) g (Ala)
<{34 axt % axPoy? oyt 22 oyt
where
19 2 82
g*='?_2( feg p T y,p> o2 (z Ael b +A€*,p) ( Ay + &g )
T (a1p)

The high order difference operators are derived from the commonly used three-
point first-order difference operators. For example, if f = f(x) is a func-
tion of a single real variable x, then f' 1is its first derivative, and £"
its second derivative. By central differences,

T 1
£ % o (frg - fx-1) (A2a)
N &
"
= (fi+1 - 2F, + F_1) A2b
() Tkl k T k-1 (A2Db)

where k is a dummy subscript indicating the kth  value of f. When rela-
tions (A2) are used, the left side of equation (Ala) becomes

1 3% 2 >4 d% \ » ~ L] ¥ * 1 *
(ﬁax_é Yo day? | oyd)t [Pz s Pia1,5-1 7 HgE L%,

I
RIS PH A B S PR %,a 1
6 8 * 1l x
(e 6)“’%3 o —>@ BER AR
£ 4 + 1 X (A3)
Bz CP1+l,J 1 9 it1,5 ¢ Cp1+l,J+l Pitz, ]
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Figure 10. - Normalized coordi-
nate system used to determine
state of stress in thermally
loaded thin flat plate.

where A is the increment of
both x and y, i 1s the row
index, and j 1is the column
index.

The equations are written
in the first quadrant of the
coordinate system of fig-
ure 10. The function is de-
fined at each intersection of

a 21 by 21 point grid, as shown in figure 11.

equations (14), the value of @*

Row index, i

H
nN
+
+

N it o o i I S S SOVERN Sy R S AR

!

e i 2 ik i o T SR O S S AR T A SR

I T O T T e e e e B e e e
TH+++++++++++++++++++ T+
T+++++++++++ 4+
tTH++++++++ 4+ F++++ T+

+++++++++F A+ +

+4+++++ A+

+H+F+F++++F+ S+ F AT+
++ 4+t 4+
+++++F++++H A+ T+
+4+++++++++F L+
++++++++++++H++++++ 4+
++++++++t+F++++++++
++++++++++ A+ +F+
AR o S N et b R S A S T A S
Fr+++++++++++++++++++ 1+
+++++++++ 4+
++++++F++ A+
++++++++F A+ 4+
F+++ AT+
++++++++++++++ 1+
I R R R B e o o S SR Ny S———
++++t+t++++F A+ A+
++++++++++++H++++++++
345678 910111213141516171819202122

Column index, j

Figure 11, - Grid for difference equations.

From the boundary conditions,
is known on the boundaries (row O and

column 21), so the equations need be written only at the intersections of the

20 by 20 point grid defined by rows 1 to 20 and columns 1 to 20,

Central 4if-

ference equations are used throughout by using the artifice of placing rows
and columns outside the boundaries of the plate, as shown in figure 11.
boundary conditions are satisfied on the upper boundary by reguiring o
vanish on row O, and the vanishing of the first derivative is satisfied by re-

quiring @* on row -1 to equal ®*
column 21 must vanish and ®* on column 22 must equal ©¥ on column 20.

That is,
@éJ =0
93,21 = O
@f,j = @fl’j

* X
Pi,22 = Pi,20

on row 1.

Equations (A4) are equivalent to equations (13).

On the right boundary, @*

The
to

on

(Ada)
(A4Db)
(Ade)

(A44d)

Similar conditions apply at the lower and left boundaries by symmetry;

namely,

¥ ¥
®21,5 = %19,

j=1, ...,21

(A5a)

15
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22,5 = ®18, =1, ...,z (a5b)
* * .

Cpi,o = q)i’Z 1 = O’ s e« s 9 20 (A5C)
* * .

3,1 = 91,3 i=0,...,20 (A54d)

Note that, ih the case of equations (A5), it is necessary to use two ficticious
rows and columns, because the difference equations are written at points on the
boundaries; whereas, in the case of equations (A4) the function ¢* is known
on the boundary so that it is unnecessary to write difference equations there.

For the problem under consideration in the text, the temperature distribu-
tion is chosen so that its second derivative is a constant. The expression for
g¥ is written in the same way as the expression for @*, except that the
plastic strains and their derivatives are not fully defined by the boundary
conditions. Therefore, forward and backward differences are used near the
boundaries instead of introducing artificial rows and columns outside the
boundaries. It should be noted that this must be done for the function g*
because nothing can be said about artificial strains lying outside the bound-
aries.

The partial differential equation (Al) is now represented by 400 simulta-
neous algebraic equations. The equation is solved iteratively by guessing the
values of the plastic strain increments on the right side and by solving for
the values of ©®F on the left side, as discussed in the text. The coeffi-
cients of the left side do not change from iteration to iteration, so the most
direct method of solving the system is to invert the coefficient matrix and
multiply the inverse by the right-side column vector. The process of inversion
is quite lengthy. The obvious implication is that, if many iterations are
necessary, this method reguires the least amount of computing time, but if few
iterations are necessary, some other method is more efficient. For the problem
under consideration, the former is the case.

In the process of solving the problem, 150 iterations were used for each
increment of load to produce a sufficiently accurate solution; 10 loading in-
crements were used. Had smaller loading increments been chosen, fewer itera-
tions per increment would have been necessary, but no definite statement can be
made about the total number of iterations. In fact, there is no rational pro-
cedure for determining a priori the proper increment size that will minimize
the total number of iterations. Hence, it appears that the direct method of
solving the system, which makes use of the inverse, is faster overall than the
indirect methods discussed in reference 10. Certainly, once the inverse has
been obtained, the time required for obtaining a solutlon for one right-side
column vector is less than for any other method.

Obtaining the inverse of such a large matrix presents two major problems.
The first is that of minimizing round-off errors, which can result in the loss
of many significant digits due to the thousands of arithmetical operations
necessary to perform the inversion. The second is the detection and correction
of random errors caused by the generation of spurious bits by the calculating
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machine over the long period of operating time necessary to finish the problem.
These two considerations suggest the method to be used for performing the in-
version.

The matrices generated by difference equations are quite sparse; that is,
they contain very few nonzero elements, and these are clustered about the
diagonal. This is suggested by the following illustration, which shows the
250th to the 254th rows of the matrix (the a's merely indicating nonzero
elements):

208 O's, 1 &, 18 O's, 3 a's, 16 O's, 5 a's, 16 O's, 3 a's, 18 O's, 1 &, 110 O's
210 O's, 1 e, 18 O's, 3 a's, 16 0's, Sa's, 16 O's, 3 a's, 18 O's, 1 a, 109 O's
211 0's, 1 a, 18 O's, 3 a's, 16 0's, S5a's, 16 O's, 3 a's, 18 O's, 1 a, 108 O's

212 O's, 1 a, 18 0's, 3 a's, 16 O's, 5 a's, 16 O's, 3 a's, 18 O's, 1 a, 107 O's

It is seen that there are at most 13 nonzero elements in a row within a range
of no more than 40 columns on either side of the diagonal; this suggests that
the matrix be partitioned into 40 by 40 submatrices. The result is shown in
figure 12. Bach square represents one of the 40 by 40 submatrices. The cross-
hatched squares are the only ones con-

NN T T taining nonzero elements; the rest are
© ) Nonnul! matrix | null matrices. The resulting matrix is
[__] Null matrix tridiageonal and is quite simple to in-
& ﬁ ] vert by a straightforward Gauss-Jordan
120 ] elimination procedure. Furthermore,
only the 28 nonnull matrices need be
e stored in the computer.
2 200 —
z Several operations must be per-
= 240 ] formed on the submatrices, namely, addi-
280 4 ] tion, multiplication, and inversion.
\\\ The Crout method suggests itself immedi-
32 \\\\§§ ately for inversion because it uses a
160 §§§§%§ check column, which permits rapid check-
0 \\\ ing of the arithmetic operations at
0 40 8 120 160 200 240 280 320 360 400 several stages of the process. This
Column index, j check column can also be used in the
Figure 12. - Partitioned coefficient matrix. processes of matrix multiplication and

addition, eliminating the problem of
spurious bit generation by the computing machine. After each matrix operation,
the extra column is checked. If the check fails, the operation is repeated.

The only place where any significant round off occurs is in the process of
inverting the submatrices. Reference 10 gives the following method of im-
proving the accuracy of the elements of an inverse. Assume Dp 1s an approxi-
mation to the inverse A-l of a square matrix A. Then a more accurate
approximation D 1is given by
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Dy = Do(2I-ADg) (a6)

where I 1s the unit matrix.

Assuming that Dp 1is accurate enough to provide a good starting value,
relation (A6) leads to an iterative process that will produce an inverse to
any desired degree of accuracy. Experiments conducted on 40 by 40 matrices of
various types showed that D1 was accurate to at least eight significant
digits when Dgp was produced by the Crout method. This permits the inversion
of the 400 by 400 matrix to be performed in single precision arithmetic. After
the entire inverse of the 400 by 400 matrix was obtained, a single iteration
using equation (A6) was performed to improve the accuracy of its elements. The
accuracy of the overall process was checked by both premultiplying and post-
multiplying the 400 by 400 inverse by the original coefficient matrix and by
investigating the residuals. The operation was performed in double-precision
arithmetic, although it is doubtful that such care was needed for matrix multi-
plication. The residuals were gratifyingly small, of the order of one in the
fourth place or less.
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APPENDIX B

CONVERGENCE

The problem of the convergence of an iterative process is a nebulous one.
It depends on the stability of the calculation procedure, the starting values
chosen, the number of stations at which convergence is demanded, and the degree
of accuracy desired, to mention a few of the more obvious factors. For this
problem, convergence is required at six stations on the boundaries and in the
interior; all were chosen because of foreknowledge of high plastic strains at
these points. The degree of accuracy required is high for engineering pur-
poses. In general, solutions accurate to better than one in the third signifi-
cant digit are obtained.

Any iterative procedure is sensitive to starting values. Even in the most
stable of procedures a good starting value can reduce the number of iterations
required to converge to the desired degree of accuracy. In an unstable proce-
dure, the choice of a starting value can mean the difference between converging
and not converging. In a problem as lengthy as that considered in this report,
any device that reduces the total computing time is worth investigating regard-
less of the complexity of programing. For this problem, the best guess avail-
able is that produced by the so-called strain invariance principle, as dis-
cussed in the text. Furthermore, this solution was desired, in any event, for
purposes of comparison. Therefore, it was decided that these would be the
starting values used.

An investigation was conducted, however, to determine precisely to what
extent convergence is hastened by this procedure. The result is disappointing.
Compared to starting with an initial guess of zero for all plastic-strain in-
crements, only about 10 iterations are saved out of a total of approximately
150. The plastic-strain increments approach the converged values very rapidly
in the first few iterations, and then the process slows down enormously. It
1s possible that, if solutions of extremely high accuracy are desired, to one
unit in the fifth or sixth significant digit, for example, the process would be
prohibitively long. TFor a problem of this type, however, it was decided that
convergence to one unit in the third decimal place is more than adequate. The
larger strain increments are of the order of unity, so this criterion results
in better than third place accuracy in the regions of greatest strain. For
normal engineering accuracy, fewer iterations would be necessary. At those
stations where plastic flow is Jjust beginning to occur, and the increment of
plastic strain is quite small, the value oscillates by more than one in the
third decimal place long after the larger increments have converged. Inasmuch
as any error in these small increments is masked in the very next increment of
loading because the next increment of plastic strain is generally at least two
orders of magnitude greater, it was arbitrarily decided to stop the process
after 150 iterations. Experiments were run to determine if the answers changed
significantly for greater numbers of iterations, and in all cases intermediate
output was investigated to ensure that the large strain increments had indeed
converged and that the small ones were close to comvergence. In many cases, at
low loads where plastic flow is occurring at only a few points, for example,

19



every point converges in less than the 150 iteration 1limit.

The calculation procedure for determining plastic strains for a given
loading increment, when stress-strain equations are used, presents certain
difficulties. If plastic strains are determined from the stresses, the method
is relatively unstable because the stress-strain curve is very flat in the
plastic region. A .small change in stress produces a large change in strain,
and the procedure is quite sensitive to the size of the loading increment and
to the starting values. The method of this report produces a considerable im-
provement in stability by calculating the increment of equivalent plastic
strain from the assumed plastic-strain components and by determining equivalent
stress from the stress-strain curve.

Until convergence occurs, the value of equivalent stress from the stress-
strain curve does not agree with the value of equivalent stress calculated
from equation (6). Thus, convergence is slowed, and again, if the loading in-
crement is too large, the problem may diverge. In this appendix another method
is presented that, in other problems of the same type as the one being dis-
cussed, has proved to be considerably more stable (converges more rapidly) and
that permits the use of larger loading increments. Experiments have been con-
ducted in which both methods were used to solve the same problem, and they con-
verged to identical answers. This method rederives the Prandtl-Reuss equations
in a form that does not contain the stresses at all, and hence does not suffer
the aforementioned disadvantages. Writing the stress-~strain relations for
generalized plane stress in conventlonal x,y,z-coordinates gives

n-1
1
€x = § (og - voy) +aT + :E; Dey p,i T LEx pon (Bla)
i=
n-1
1
ey - E (Oy - VGX) *al + Zl Aey:P;i + Aey:P)n (Blb)
i=
n-1
v
€, = - E—(OX + oy) + ol + gg; Dez p,i F Degpon (Bic)
n-l1
W SR AP R ) (B1d)
E ~ b,1 b,n

When the elastic parts of the strains are designated by a superscript e, the
equations can be rewritten as

(B2a)
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g - € = 1 ; Y oy (B2b)
1L +v
€§ - €§ = =% — oy (B2c)
ve = lg LA (B24)
or
e§ - €5 ~ €g - €3 ~ e§ - &g _re _ 1+ (53)
O = Oy Ox Oy T E
A modified total strain is now defined as follows:
n-1
| S

x = ex - D, D6y n 3= €§ ol + Aoy oy (B4a)

=

n-1

ro_ e
= - - = + e

€y = €y & Doy o1 = €y t ol + Aey o 4 (B4b)

n-1
€y, = €, - Z pey o3 e + ol + 8¢y oon (B4c)

i=1

n-1
'= - . = € +

T =Y 2y Np g =TS+ &, (B4d)

The basic assumption of Prandtl is that, at any instant of loading in the
plastic range, the plastic-strain increments are proportional. to the respective
instantaneous stress deviations, which in the notation of this paper is equiva-
lent to

Sx,p = Byup _ Mp - Sap  Syup - Map Np o g (B5)
GX - Uy UX Gy T

where AN is an instantaneous nonnegative constant of proportionality, which
may vary throughout the loading program. Combining equations (B3) to (B5)
yields

Sxp " Pyp _Sp T Mmp Byp Tt ap Hp A oy (g
T ot T _ ot t _ !t 1 1+
eX ey GX €Z Gy €Z Y DN+ __E_Z.
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where K 1is a constant. From this it follows that

2 2 2 2
(Aﬁx:p - AQY:P) * (AEX:P - AEZ:P) * (AEyJP B AﬁZ;P) * 6AVP

1 14 t 1 H 1 H
= KZ[(EX - ey)2 + (ey - ez)2 + (ey - ez)2 + 6(y )%] (B7)
Defining
. (Dey o - Bey )2 + (Dey o - £, )2 + (Ley o - Ae, )2 + 62
€,P 3 x,b Y,P X,P Z,P Y,P Z,P b
(B8)
and
= ‘/E 1 1\2 N 1 12 1 :”é L 2
ee’t = —g_ (EX - ey) + (ex - ez) + (ey = ez) + B(Y ) (B9)
yields
JAYS
K = AN . e,p (B10)
AN + L+ v €e,t
E
Making use of the incompressibility assumption
“x,p ¥ €y,p T Cz,p =0 (B11)
and solving equation (B6) for the individual strain increments yield
JAYS
= —S.P et Lt
A, p Beo 4 (2ex - &y - <5) (B12a)
2
Aee P ! 1 1
Doy p = z—2= (2ey - ex - €3) (B12Db)
e,t
Ney p = ~Dey o~ Doy p (B12c)
Ne
&yp = —22B (B124d)
Ce,t
2
Now all that remains is to relate the values of Aeg and €5 ¢ to the

stress-strain curve. Combining the relations for 2\ (eq. (B5)), eqlivalent
plastic-strain increment (eq. (B8)), and equivalent stress (eq. (6)) yields
JAYS

N =§_E;£ (B13)
Oe
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Combining equations (B10) and (B13) produces

21+ v
Ge,t = Aee’P 4+ g = Ce (Bl4)

Let the value of deg at the end of any given loading increment be desig-
nated by Ce,i and the value at the end of the preceding increment be desig-
nated by 0eg,i-1. An expression for e can then be written in a Taylor
series and approximated as follows if terms of high order are neglected and
differential operators are replaced with difference operators:

~ me
e,i = %,i-1 * (Ae > Aee:P (B15)
€P/i-1

Combining equations (B1l4) and (B15) yields

21l+v
& e,i-1

ﬁEe,p o1

Thus, a strain-strain relation can be derived from a stress-strain curve
by using equation (Bl6). It is to be noted that, for linear strain-hardening,
equation (B16) is exact. Inasmuch as most stress-strain curves are nearly
flat, equation (Bl6) is very nearly exact; and the strain-strain curve is very
nearly a straight line having a slope of unity. Therefore, an iterative
process utilizing the strain-strain curve is more rapidly convergent than one
utilizing the stress-strain curve. The iterative procedure for determining the
rlastic-strain increments is as follows:

€e,t -

Nee,p = (B16)

3
21l+0¢
1t3 =%

(1) Obtain elastic solution.
(2) Guess plastic-strain increments.

(3) Calculate the corresponding "modified" total strains from equa-
tions (B4) and evaluate €, from (BY).

(4) Find Ae from equation (B16).

€,p

(5) Calculate a new set of plastic-strain increments from equations (Bl2).
(6) Repeat steps 3 to 5 until succeeding values of plastic-strain in-
crements are sufficiently close to each other. It is to be noted that, as

convergence is approached, the value of Ae€g p bproduced from equation (B16)
approaches the value calculated from equation (B8).
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